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Shaping the turnout diverging track with nonlinear curvature for enhanced speed 
 

Abstract:  In the paper an attempt has been made to concentrate attention on shaping the 
variable curvature in the diverging track of the railway turnout. Making use of some earlier 
studies, solutions provided with a circular arc in the mid-zone, and in the extreme regions 
with segments of nonlinear curvature of equal length and zero curvature at the start and end of 
the turnout, have been assumed as models. The most advantageous choice of the type of 
curvature has been made taking into account the kinematic conditions. A presentation made 
includes an analytical record of the curvature and the tangent inclination angle in the 
diverging track length and the Cartesian coordinates of the track. The final part of the paper 
referred to the determination of a set of some basic magnitudes relating to geometric 
parameters appropriate for a given speed of trains and adequate to ensure the minimization of 
the length of the entire turnout at a given final ordinate. 
 
Keywords: Railway turnouts; Diverging track; Curvature modelling; Selection of geometrical 

parameters 
 
Introduction 
The issue of railway turnouts is developed in many publications [1, 2, 4, 18, 21, 23, 24], often 
referring to high-speed railways [3, 20, 25, 26]. The design of the turnout itself undergoes 
constant modifications, however, still in the typical geometric shape of the turning track in the 
ordinary turnout, a single circular arc without transition curves is used. Such a solution is not 
used on railway routes and means the necessity to limit the speed of trains. This is due to the 
occurrence of places of rapid, abrupt changes in the ordinates of the curvature plot at the 
beginning and end of the turnout. Recently, in some countries, especially on high-speed 
railways, efforts are being made to smooth out the curvature curve in these regions. This is 
achieved by introducing the so-called "Sections of clothoid" on both sides of the circular arc, 
on which the curvature changes in a linear manner, but often without reaching the extreme 
zero values [2, 3, 20, 25].  

Here, the length of the turning path is divided into three zones (Fig. 1):  
• an initial zone of length l1 having a linear curvature, 
• a central zone of length I2 having a predetermined curvature, 
• an end zone of length 13 having a linear curvature. 
The kinematic parameters determine the value of the radius of the circular arc (i.e. the 

curvature k2) and the length of sections with variable curvature for the given train speed. Of 
course, various variants of solutions are possible, related to the curvature values and the 
lengths of the individual zones. It also allows for free shaping of the turnout bevel and its end 
elevation.  
The work [8] presents the analytical solution of the problem for the discussed case. The 
equations of curvature k(l) and the angle of the tangent slope Θ(l) were determined, where the 
parameter l determines the position of a given point on the length of the curve. On this basis, 
the parametric equations x(l) and y(l) were determined for the initial zone and the end zone, 
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and the equation y(x) for the middle zone (i.e. circular arc). Using these equations, it is 
possible to determine the characteristics of any turnout with sections of linear curvature. 

 
1. Curvature diagram with sections of linear curvature along the turnout return track length 

(R1 = 16000 m, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25000 m) [8] 
 

This allowed, among other things, to clarify the issue of the geometrical configuration of 
two selected turnouts manufactured by Voestalpine [20]: 

• Turnout I:  Rz 60E1-10000/4000/∞-1:39,111 
R1 = 10000 m, l1 = 37,500 m, R2 = 4000 m, l2 = 48,383 m, l3 = 55,225 m, R3 = ∞ 

• Turnout II:  Rz 60E1-16000/6100/∞-1:47,833 
R1 = 16000 m, l1 = 56,000 m, R2 = 6100 m, l2 = 58,0624 m, l3 = 62,500 m, R3 = ∞ 

The results of calculations of the characteristic values of both turnouts are shown in 
Table 1, and the diagrams of horizontal ordinates are shown in Figure 2. 
 
Tab. 1. List of characteristic values for selected turnouts 

 l = l1 l = l1+ l2 l = l1+ l2+l3 

 x(l) 
[m] 

y(l) 
[m] 

Θ (l) 
[rad] 

x(l) 
[m] 

y(l) 
[m] 

Θ (l) 
[rad] 

x(l) 
[m] 

y(l) 
[m] 

Θ(l) 
[rad] 

I 37,499 0,105 0,00656 85,878 0,716 0,01866 141,088 2,000 0,02556 

II 55,999 0,151 0,00634 114,058 0,795 0,01586 176,546 2,000 0,02098 

 
In the examples shown, we deal with a situation where the curvature at the end of the 

geometrical system takes the value of zero. Therefore, the solution presented in [8] also 
covers such special cases. The obtained final ordinate yk = 2,000 m indicates that both 
turnouts are intended for use in connections of parallel tracks on the route, the spacing of 
which is 4 m. The paper [8] also presents a method of creating given geometric solutions - 
obtaining a specific turnout slope and a specific end elevation of the turning track.  

At the 10th Scientific and Technical Conference "Design, construction and 
maintenance of infrastructure in rail transport" INFRASZYN 2017, a modification of the 
discussed solution was presented, consisting of an analytical solution of the problem while 
alleviating the curvature in the extreme zones of the turnout [11]. 

Figure 3 shows a graph of curvature along the length of a turnout return track with 
sections of non-linear curvature, and the numerical characteristics corresponding to the 
turnout in Figure 1. 
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2. Graphs of horizontal ordinates along the length of the return track of turnouts I and II  

from Table 1 (on a contaminated scale) [8] 
 

 
3. Curvature plot with sections of non-linear curvature along the turnout return track length 

(R1 = 16000 m, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25000 m) [11] 
 

The comparative analysis covers the general cases appearing in Figures 1 and 3 as well as 
the corresponding cases with zero curvature on both sides of the system, arising after the 
adoption of k1 = k3 = 0. The list of these cases was as follows: 

• turnout I (with sections of linear curvature) 
      R1 = 16000 m, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25000 m, 

• turnout II (with sections of linear curvature) 
R1 = ∞, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = ∞, 

• turnout III (with sections of nonlinear curvature) 
      R1 = 16000 m, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25000 m, 

• turnout IV (with sections of nonlinear curvature) 
R1 = ∞, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = ∞. 

Collective diagrams of the turn track curvature along the length of the mentioned 
turnouts are shown in Figure 4. 

The discussed issues were also taken up in the works [9, 10, 12, 13]. 
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4. Diagrams of curvature along the length of the turning track of the compared turnouts 

(R1 = 16000 m, l1 = 55 m, R2 = 6000 m, l2 = 60 m, l3 = 65 m, R3 = 25000 m) [11] 
 
Searching for the most advantageous solution 
At this point, however, a key question arises: what set of values characterizing the considered 
turnout, i.e. k1, k2, and k3 as well as l1, l2 and l3, is the most favorable in a given situation? The 
number of possible variants is significantly limited by the dynamic analysis presented in the 
works [16, 17].  
 

 
5. A favorable curve of curvature with non-linear sections along the length of the turnout 
return track (k1 = 0, l1 = 86 m, k2 = 1/6000 rad/m, l2 = 12,484 m, l3 = 86 m, k3 = 0) [17] 

 
In this analysis, several cases of using sections of linear and non-linear curvature were 

considered. The case with non-linear curvature sections of equal length and zero curvature at 
the beginning and end of the turnout turned out to be the most advantageous solution, i.e. with 
the lowest values of dynamic interactions (accelerations). Figure 5 shows an example of the 
curvature curve along the length of the turnout return track for this particular case. 

Compared to the model diagrams in Figures 1 and 3, the number of control quantities 
in Figure 5 has decreased by half. Here, it is also possible to modify the division of the 
turnout return track into individual zones:  

• an initial zone that has the length l1 and curvature that varies nonlinearly from zero to 
value k = 1/R , 

• a central zone that has a length l2 and a predetermined curvature of value k = 1/R , 
• an end zone, which has the length l1 and curvature that varies non-linearly from k = 

1/R to zero.  
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This paper presents a complete solution to the discussed problem. This required the 
determination of the nature of the curvature variability in the extreme zones of the turnout 
turn track. Modeling sections of variable curvature along the length of the turnout return track 
allows creating its analytical record in the form of the k(l) function. The next step is to 
determine a set of numerical values R, l1 and l2, corresponding to the set train speed and 
ensuring the minimization of the length of the entire turnout (at the given final ordinate). 
The coordinate equations of the searched connection can be written in a parametric form [5]: 

   
( s )) (cox l dll Θ= ∫                                (1) 

     
( n )) (siy l dll Θ= ∫                                 (2) 

 
Analytical solution to the problem 
A solution to the problem for the initial zone 
The use of sections of nonlinear curvature means that the following boundary conditions 

apply in the initial zone (for 10,l l∈
): 

 

              (0) 0k =        ( )1k l k=
 

                           (3) 

           1

'(0)
k

k C
l

=
   ( )1' 0k l =

  
 
and the differential equation 
 

    
(4)( ) 0k l =                                    (4) 

 

with a numerical factor 0C ≥ .  
As a result of solving the differential problem (3), (4) we obtain the following curvature 
equation: 
 

         

2 3
2 3

1 1 1

(2 3) ( 2)
( )

Ck C k C k
k l l l l

l l l

− −= − +
                                          (5) 

 
and a function of the angle of the tangent Θ(l) is described by the relation 
 

                      

2 3 4
2 3

1 1 1

(2 3) ( 2)
( )

2 3 4

Ck C k C k
l l l l

l l l

− −Θ = − +
                  (6) 

 

At the end of the starting zone 
( )1 1

6

12

C
l kl

+Θ =
. 

The issue of the selection of the C coefficient value was considered in [12]. When 
selecting the most favorable of the parametric curves, first of all, one should follow the 
criterion of the minimum required length, limited by the permissible value of the acceleration 
increment. For C = 0 (which case corresponds to the Bloss curve), the length of the end 
segment must be 50% longer than that for the linear curvature. On the other hand, the smallest 
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value of elongation (only by ⅓) occurs for C = 1. Taking such a value of the C coefficient 
leads to the following equations of the functions k(l)and Θ(l) for the initial zone: 
 

                                

2 3
2 3

1 1 1

( )
k k k

k l l l l
l l l

= + −
                              (7) 

 

              

2 3 4
2 3

1 1 12 3
( )

4

k k k
l l l

l l l
l = + −Θ

                  (8) 
 

The function Θ(l) makes it possible to determine the parametric equations x(l) and y(l) 
for this zone by using the dependencies (1) and (2). The Maxim program [19] was used to 

expand functions ( )cos lΘ
 and ( )sin lΘ

 into the Maclaurin series, and then individual terms 
were integrated, obtaining the following parametric equations: 
 

             

2 2 2 2 4 2
5 6 7 8 9

2 3 4 5 4 6
1 1 1 1 1 1

5 3
( )

40 36 504 96 3456 864

k k k k k k
x l l l l l l l

l l l l l l

 
= − − + + + − 

            (9) 
 

             

3 3 3
3 4 5 7 8 9

2 3 3 4 5
1 1 1 1 1 1

( )
6 12 20 336 192 2592

k k k k k k
y l l l l l l l

l l l l l l
= + − − − +

        (10) 
 

At the end of the zone, the angle of the tangent 
( )1 1

7

12
l klΘ =

. 
It should be noted here that the presented solution corresponds to the new form of the 

transition curve, adapted to the railway operational requirements, which was proposed in the 
works [14, 15]. 
 
A solution to the problem of middle zone 

In the zone of the circular arc, i.e. for 1 1 2,l l l l∈ +
 there is a constant curvature 

 

         ( )k l k=                                      (11) 
 
and function Θ(l) is described by the relation  
 

   
1

( 6)
( )

12

C k
l l kl

−Θ = +
                                               (12) 

 

Value of the angle at the end of a circular arc Θ(l) equals
( )1 2 1 2

6

12

C
l l kl kl

+Θ + = +
; for 

coefficient C = 1 value 
( )1 2 1 2

7

12
l l kl klΘ + = +

. 
The circular arc equation can be written as an explicit function y(x). The method of its 

determination is analogous to that in the works [6, 7]. We assume the length of the circular arc 
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l2 (measured along the arc itself). Its radius is R and the slope of the tangent at the starting 

point 1 1tan ( )s l= Θ . First, we determine the coordinates of the arc's center-point ( ),S SS x y
. 

       

( ) 1
1 2

11
S

s
x x l R

s
= −

+                                (13) 
                   

( )1 2
1

1

1
Sy y l R

s
= +

+                                              (14) 
 
The circular arc equation is as follows: 
 

( )22( ) S sy x y R x x= − − −
  ,   

( ) ( )1 1 2,x x l x l l∈ +
                            (15) 

 

Since the angle of return of the tangents of a circular arc is 2 /l Rα = , formula for the 

angle of inclination of the tangent to the arc at its end, i.e. for ( )1 2x l l+
, can also be taken as 

( ) ( )1 2 1l l l αΘ + = Θ +
. The result is the slope of the tangent at this point 

( )2 1tans l α= Θ +   . 
The coordinates of the end of a circular arc are as follows: 
  

( ) ( )1 2 1 2 2
1 2

1 1
tan

2 1 1
x l l x l R

s s

α  
 + = + +
 + +                                (16) 

 

 

( ) ( ) 1 2
1 2 1 2 2

1 2

tan
2 1 1

s s
y l l y l R

s s

α  
 + = + +
 + +                              (17) 

 
A solution to the problem for the end zone 
We assume boundary conditions 
 

                      ( )1 2k l l k+ =
       ( )1 22 0k l l+ =

  
            (18) 

               ( )1 2' 0k l l+ =
        

( )1 2
1

' 2
k

k l l C
l

+ = −
   

 
and differential equation (4). The solution of the differential problem (4), (18) is as follows: 
 

       
2 3

1 2 3 4( )k l c c l c l c l= + + +                                 (19) 
 

where   
( ) ( )2 3

1 1 2 1 22 3
1 1

3 2
1

C C
c l l l l k

l l

 − −= − + − + 
    

  
( ) ( )2

2 1 2 1 22 3
1 1

2(3 ) 3(2 )C C
c l l l l k

l l

 − −= + − + 
    
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( )3 1 22 3

1 1

3 3(2 )C C
c l l k

l l

 − −= − + + 
   

  
4 3

1

2 C
c k

l

−=
  

 
The equation for the angle of the tangent has the form 
 

    

2 3 4
0 1 2 3 4

1 1 1
( )

2 3 4
l c c l c l c l c lΘ = + + + +

                              (20) 
 

where   
( ) ( )3 4

0 1 1 2 1 22 3
1 1

6 3 2

12 3 4

C C C
c l l l l l k

l l

 − − −= + + + + 
   . 

At the end of the curve, the value of the angle Θ(l) is 
( ) 1 21 2

6
2

6

C
kl kl l l

+= +Θ +
; for 

coefficient  

C =1 value 
( ) 1 21 2

7

6
2 ll l k kl=+ +Θ

.  
For C = 1 the values of the numerical coefficients are: 
 

( ) ( )3 4

0 1 1 2 1 22 3
1 1

5 2 1

12 3 4
c l l l l l k

l l

 
= − + + + + 
    

( ) ( )2 3

1 1 2 1 22 3
1 1

2 1
1c l l l l k

l l

 
= − + − + 
    

( ) ( )2

2 1 2 1 22 3
1 1

4 3
c l l l l k

l l

 
= + − + 
    

 
( )3 1 22 3

1 1

2 3
c l l k

l l

 
= − + + 

   

 
4 3

1

1
c k

l
=

  
 

After expanding the function ( )cos lΘ
 and ( )sin lΘ

 into a Taylor series using the 
Maxim program [19] and integrating individual words, we obtain parametric equations: 
 

( ) ( ) ( ) ( )
2

2 3

0 0 0 00 0 0si( ) cos cn
2 6

os
k k

l l l lx ll x ll Θ − − Θ+ Θ − − −=
 

( ) ( )
3 4

4 5

0 0 0 0si
0

cn
24 1

s
2

o
k k

l l l l+ Θ − + Θ −
                                    (21) 

( ) ( ) ( ) ( )00

2
2 3

0 0 0 0 0( ) cosin sin
2

s
6

k k
y ll l ll l ly l= + Θ − + Θ − − Θ −
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( ) ( )

3 4
4 5

0 0 0 0co sin
24 1

s
20

k k
l l l l− Θ − + Θ −

                                 (22)
  

where 0 1 2l l l= +   ,   ( )0 1 2l lΘ = Θ +
. 

 
The basic relation for each turnout applies 

( )1 2

1
tan 2l l

n
Θ + =

            (23) 
 
Analysis of the radius of a circular arc 
 
Tab. 2. Summary of the values characteristic for the generated variants with increasing the 

radius of the circular arc 
R 
[m] 

l1 

[m] 
l2 

[m] 
lk 

[m] 
Θ(lk) 
 [rad] 

n 
 

x(lk) 
[m] 

y(lk) 
[m] 

1800 146 0 292 0,09463 10,53595 291,362 15,177 
2000 131 0 262 0,07642 13,06067 261,627 11,002 
2200 119 0 238 0,06319 15,82530 237,769 8,256 
2400 109 0 218 0,05299 18,85520 217,851 6,350 
2600 101 0 202 0,04532 22,04995 201,899 5,034 
2800 94 0 188 0,03917 25,51886 187,930 4,049 
3000 88 0 176 0,03422 29,20937 175,950 3,312 
3200 82 0 164 0,02990 33,43951 163,964 2,696 
3400 77 0 154 0,02642 37,83906 153,974 2,238 
3600 73 0 146 0,02366 42,26217 145,980 1,900 
3800 69 0 138 0,02118 47,19791 137,985 1,608 
4000 66 0 132 0,01925 51,94164 131,988 1,397 
4200 63 0 126 0,01750 57,12702 125,991 1,213 
4400 60 0 120 0,01591 62,85184 119,993 1,050 
4600 57 0 114 0,01446 69,16811 113,994 0,906 
4800 55 0 110 0,01337 74,80074 109,995 0,809 
5000 53 0 106 0,01237 80,85841 105,996 0,721 

 
We assume that the analysis will be carried out for the train speed of V = 140 km/h. In 

order to maintain the permissible value of unbalanced acceleration adop = 0,85 m/s2, in further 
calculations, we assume the initial radius of the circular arc R = 1800 m. Assuming the 
permissible value of the acceleration increment ψdop = 0,3 m/s3 (as for single transition curves 
with the curvature linear), we get - as a starting point - the lengths of the extreme sections l1 = 
146 m.  

The analysis of the radius of the circular arc was carried out with the assumption that 
the length l2 = 0. This means that the central part (i.e. the circular arc itself) does not appear in 
the turnout path, and the R parameter refers only to the extreme sections. The adopted 
assumption obviously leads to the shortening of the entire junction (i.e. the value of lk). 
Increasing the radius R makes it possible to reduce the length of the nonlinear curvature 
sections. The results of this operation are presented in Table 2. 

For the assumed R = 1800 m and l1 = 146 m, we obtain a turnout with a length of lk = 
292 m, slope 1:10.53595, and end elevation of 15.177 m. Increasing the radius R shortens the 
entire turnout and reduces both its end elevation y(lk), and a 1:n skew (i.e. increasing the value 
of n). Therefore, it is a very beneficial operation from the point of view of the executive 
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practice. However, since design considerations prevent the turnout end elevation and the 
turnout haunch not being too small, there is an upper limit for which the R value should not 
exceed. 
 
Obtaining the required final ordinate of the turnout track  
 
Tab. 3. Summary of the values characteristic for the generated variants without the central 

zone to obtain the final ordinate of 2 m 
R 
[m] 

l1 

[m] 
l2 

[m] 
lk 

[m] 
Θ(lk) 
 [rad] 

n 
 

x(lk) 
[m] 

y(lk) 
[m] 

1800 146 0 292 0,09463 10,53595 291,362 15,177 
2200 119 0 238 0,06311 15,82530 237,769 8,256 
2600 101 0 202 0,04535 22,04995 201,899 5,034 
3000 88 0 176 0,03422 29,20937 175,950 3,312 
3400 77 0 154 0,02642 37,83906 153,974 2,238 
3500 75 0 150 0,02500 39,99167 149,977 2,063 
3600 73 0 146 0,02366 42,26217 145,980 1,900 
3700 71 0 142 0,02239 44,66055 141,983 1,748 
3510 74,48 0 148,96 0,02476 40,38610 148,938 2,028 
3520 74,26 0 148.52 0,02461 40,62124 148,498 2,010 
3530 74,05 0 148,1 0,02447 40,85226 148,078 1,993 
3540 73,84 0 147,68 0,02433 41,08460 147,659 1,976 
3525 74,16 0 148,32 0,02454 40,73384 148,298 2,0020 
3526 74,14 0 148,28 0,02453 40,75640 148,258 2,0004 
3527 74,12 0 148,24 0,02452 40,77897 148,218 1,9988 
3528 74,1 0 148,2 0,02450 40,80155 148,178 1,9970 
3526 74,133 0 148,266 0,02453 40,76025 148,244 2,000049 
3526 74,132 0 148,264 0,02453 40,76080 148,242 1,999995 
3526 74,131 0 148,262 0,02453 40,76135 148,240 1,999941 

 

We assume obtaining the final elevation ( )1 22y l l+
= 2 m. A turnout with such an end 

elevation may be used in the connection of parallel tracks with a 4 m spacing. The procedure 
here is iterative. Table 3 presents variants without the central zone (for l2 = 0). 
For the input values of R = 1800 m and l1 = 146 m, we obtain a turnout with a length of lk = 
292 m, slope 1:10.53595, and the final ordinate of the turning track equal to 15,177 m. Thus, 
the final ordinate significantly deviates from the required value of 2 m. it turns out that the 
basic method of its reduction is to increase the R radius. This makes it possible to reduce the 
length of the outermost sections. In an iterative way, we arrive at the radius lk = 292 m m and 

corresponding length 1
73;75l ∈

m, for which the end elevation is in the range
3500;3600R ∈

 m. Further correcting the values of R and l1, we obtain the required end 
elevation; The finally adopted geometrical layout of the turnout has a radius of R = 3526 m 
and the lengths of sections of variable curvature l1 = 74,133 m. 

The curve of the curvature along the length of the determined turnout path is shown in 
Figure 6, and the plot of the turn track ordinate in the rectangular coordinate system in Fig. 7. 

The analysis carried out further shows that obtaining the assumed final ordinate when 
introducing the central zone (i.e. the segment of the circular arc) results in the elongation of 
the entire turnout in each case in relation to the situation presented in Table 3. Therefore, it 
does not seem advisable to prefer this solution. 



Transportation Overview - Przegląd Komunikacyjny 8/2021 
 

28 
 

 
6. The curve of curvature along the length of the designated reversal track of the turnout  

(R = 3526 m, l1 = 74.133 m, l2 = 0) 
 

 
7. The plot of horizontal ordinates along the length of the designated turning track of the 

turnout (R = 3526 m, l1 = 74.133 m, l2 = 0, on the contaminated scale) 
 
Summary 
In the turning track of a typical railway (ordinary) turnout, a single circular arc without 
transition curves is used. As a result, there are places of rapid, abrupt change in the ordinates 
of the curvature plot at the beginning and end of the turnout. Recently, in some countries, in 
order to smooth the curve of curvature in these regions, the so-called 'Sections of clothoid' on 
either side of the circular arc in which the curvature varies linearly.  
As a result of the dynamic analysis carried out in [16, 17], it was shown that the turnout return 
path with a non-linear course of curvature in the initial zone and the end zone as well as zero 
curvature values at the extreme points of the geometric system has the most favorable 
properties. At the same time, doubts arose as to whether the application of the so-called 
"Clothoid sections" with non-zero curvature values at the start and endpoints of the return 
path.  
This paper presents the analytical method of solving the problem, which is general and 
complete. The model adopted was the solution with a circular arc in the middle zone, and 
non-linear curvature sections of the same length in the extreme zones. The most advantageous 
type of curvature was selected from the point of view of kinematic conditions. The analytical 
record of the curvature and the angle of the tangent slope along the length of the turnout 
return track and the Cartesian coordinates of that track was presented. 
The final part of the work is devoted to the analysis of the geometric parameters of the return 
track for a given train speed. The proposed design method made it possible to analyze the 
value of the circular arc radius and to obtain the required final ordinate of the return track. 
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The criterion of minimizing the length of the entire turnout at a given final ordinate of its turn 
track was followed. 
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